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SUMMARY 

A generalized treatment of the pore-distribution problem is proposed with no 
reference to the geometrical form of the pores. The actual pore-size distribution is 
clearly defined and distinguished from the commonly known pore-volume distribu- 
tion which can be determined experimentally. A relationship between the two distri- 
butions is derived and the possibility of obtaining them from size exclusion chro- 
matography data is demonstrated with silica gels intended for use in high-perform- 
ance liquid chromatography. The important numerical characteristics of the distri- 
butions, e.g., mean value, standard deviation or variance, have been evaluated by 
applying the method of moments. The results obtained and the distributions for 
selected silica gels are discussed. 

INTRODUCTION 

All commonly used methods of determining the pore distribution of dispersive 
materials, e.g., capillary condensation, mercury porosimetry and size-exclusion chro- 
matography (SEC), actually yield the relative pore-volume distribution 

where V is the volume of pores of diameter cp falling within the range cp to cp + dq 
and VP is the total volume of all pores in the material studied. This function is often 
incorrectly called the pore-size distribution, which strictly corresponds to 

D(v) = dN,lNdq (2) 

where NV is the number of pores whose diameters fall within q to rp + dq and N is 
the number of all pores. 

In the present paper the functions represented by eqns. 1 and 2 will be distin- 
guished as the pore-volume distribution and actual pore-size distribution, respec- 
tively. Unfortunately, in contrast to W(q), there are no methods of experimentally 
determining D(q). However, by applying a generalized approach to the pore-distri- 
bution problem that does not require assumptions about the pore geometry, a 
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relationship between the two distributions can be derived which enables the deter- 
mination of D(9) if W(9) is obtained experimentally. The possibility of determining 
D(9) by using SEC measurements is demonstrated with silica gels intended for use 
in high-performance liquid chromatography (HPLC). 

THEORETICAL 

Fore-size distribution problem 
It is well known that the pores of solid materials are of various shapes and 

sizes. The form of the pores and their dimensions are mutually related. To obviate 
the limitations arising from the pore shape, one commonly defines the linear size of 
the ,pores via the so-called hydraulic diameter, 9h 

V)h = 2V,/A, (3) 

where V, and A, are the volume and the surface area of a pore or of a group of equal 
pores . l,* Practically, it is more convenient to employ the so-called effective diameter, 
9, defined as 9 = 29, for a cylindrical pore. 

In order to define 9 without reference to the form of the pores, the relationship 

9 = h9h (4) 

is introduced, where h will be called the pore-shape parameter. Usually, the pores of 
a solid are of equal or nearly equal form, being conditioned by the solid’s origin. 
From relationships 3 and 4, a constant value of h (h > 0) corresponds to pores of 
equal shape, e.g., h = 2 holds for cylindrical pores. If the pores are of nearly equal 
form as is commonly observed, then h must be considered as an average correspond- 
ing to an average pore shape. 

In the following, the effective pore diameter, 9, defined by relationship 4, will 
also be called the pore diameter. Since 9 has arbitrary values in a continuous interval, 
it can be considered as a random quantity characterized by a distribution, D(9). The 
main problem in each experimental study of a porous material is to plot the differ: 
ential function of the pore distribution which yields maximum information concern- 
ing the structure of the material. From a theoretical point of view, however, it is 
interesting to derive some explicit expression of this function, thus facilitating the 
pore-structure investigations. 

Combining relationships 3 and 4 yields: 

J’, = (dW4 (9 

It is known that the surface area of a pore, A,, is a function of 9. Here it will be 
described by the general expression 

A, = qa’ -“cp” (6) 

where n is a positive real number dependent on the pore shape and called the pore- 
shape index, q is a dimensionless constant and a is a numerical parameter. It is 



obvious that eqn. 6 originates from the evidence that A, has dimensions of [lengthlz, 
while cp has a dimension of [length]. Thus, a should also have a dimension of [length] 
to satisfy the equation: 

[length]’ = [-] . [length12-” . [length]” 

Theoretically, this equation holds for each arbitrary value of n. However, taking into 
account that the surface area of-a solid is determined only by those pores representing 
open cavities, it follows that n < 2, a value corresponding to the closed spherical 
form. For cylindrical pores, it can be shown that n = 1, while for pores of any form, 
Ocn<2. 

Since both h and n are pore-shape dependent, it is logical to postulate the 
existence of a relationship between them. For example, for cylindrical or spherical 
pores, h = n + 1. For pores of arbitrary shape, however, it is difficult to derive a 
common relationship. Later, this problem wil be discussed again when considering 
the results obtained. 

Combination of eqns. 5 and 6 leads to a general expression for the volume, 
VP, of a pore having diameter q: 

VP = (qa2-"/2h)@+' (7) 

Remembering that cp is a random quantity characterized by a density function, D(q), 
we can use the last expression to define the volume, V, of all pores whose diameters 
fall within the range 0 to qo, 

or taking account of eqn. 7: 

V = (qaZp”N/2h) s ” cp”‘lD(cp)dcp (8) 
0 

The upper integration limit, qpy, in eqn. 8 is a variable, which can take any value of 
cp. When cpV = cc 

VP = (qa’ -“N/2h).T, + 1 69 

where 

(10) 

and VP, as mentioned above, is the total pore volume. 
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Let us further differentiate eqn. 8 as follows: 

d V/dp, = (qa’ -‘N/2h)(d/d& y @+ ‘D(cp)dq 

0 

According to the Leibnitz-Newton theorem3: 

d V/dq, = (qa’ -“N/2h)&!+ ’ D(cpv) 

Since q7, can be equal to each rp value, we may write: 

d V/dq = (qa2-“N/2h)(p”+ ‘D(q) (11) 

Dividing eqn. 11 by eqn. 9, and taking account of expression 1, we obtain the im- 
portant relationship: 

Wcp) = dV/V,h = b~“+~iJ.+ dD(ql (12) 

It follows from eqn. 12 that the pore-volume distribution, W(q), depends on the 
actual pore-size distribution, D(p), as well as on the pore-shape index, n, reflecting 
the influence of the real pore geometry. For a certain porous material, however, 
neither W(q) nor D(q) can be expressed in an explicit form. Bearing in mind the 
importance of both functions when studying the pore structure, it would be very 
useful to be able to obtain them, even approximately. 

So defined, the problem can be solved in a satisfactory way. Thus, the methods 
of determining the pore-volume distribution involve plotting an experimental W(q) 
curve. In principle, the latter can be approximated more or less precisely by a poly- 
nomial or even by a known differential function. Having this expression at our dis- 
posal, we can define D(q) approximately by rearranging eqn. 12: 

D(q) = J.+@-‘“+l’w(d (13) 

In practice, in order to employ eqn. 13 it is necessary to know the value of the J,+ 1 
integral. Obviously, eqn. 10 is inapplicable because J,+ 1 depends on D(q). Eqn. 13 
is therefore integrated as follows: 

D(cp)dp = Jn+ 1 cp-‘“+l’W((p)dcp 

0 0 

Taking into consideration that D(p) is a density distribution function, it is evident 
that the left-hand-side integral is unity. Hence 

J II+1 = I/ cp -(“+ l’W(cp)dq 

0 

and if n is known, J, + 1 can be evaluated. 

(14) 



DETERMINATION OF PORE DISTRIBUTION BY SEC 167 

For detailed determination of the actual pore-size distribution it is necessary 
to obtain its most important numerical characteristics, e.g., the mean value, &, the 
standard deviation, bD (or the variance, (r$)), and the maximum, &,max. According 
to the well known method of moments3, the mean value is defined as the first initial 
moment of D(q). Taking into account eqn. 13, we can write: 

CpD = 
!= 

cpW)dq = J.+ 1 
r 

cp-“VcpM 
0 0 

On the other hand, the variance is defined as 

(15) 

4 = $4 - (@DY 

where cp$ represents the second initial moment of D(p), i.e.: 

(16) 

1 
VD = 

r 

cp*Wcp)dv = Jm+i 
P 

‘p’-“WqNb (17) 

0 0 

Finally, to e.StiIIKite the maximum, @.D,max, it is enough to plot the distribution D(q) 
or to nullify its first derivative, dD(cp)/drp, and to solve this equation with respect to 

cp. 
Eqns. 15-17 enable the evaluation of the numerical characteristics only if the 

n value is available. In practice, the pores are commonly regarded as cylindrical 
capillaries, thus n = 1. In general, n is unknown and unfortunately cannot easily be 
determined. Special procedures for evaluating 12 must be developed depending on the 
methods used for determining the pore-volume distribution. An appropriate proce- 
dure for SEC is described below. 

Using eqn. 6 and taking into account that cp is randomly distributed, it can be 
shown also that the total surface area, Ap, of a porous material is 

AP = qa* -"NJ,, (18) 

where, in accordance with eqn. 13: 

(19) 

Further, combination of eqns. 18 and 19 leads to 

h = A,/2VP 

0 

rp - ’ Wcp)dq (20) 
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which enables an independent evaluation of the pore-shape parameter, if both AP 
and V, are determined experimentally. Attention has to be paid however to the di- 
mensions of the quantities, e.g., if Ap, VP and q are expressed in cm2, cm3.and nm, 
respectively, then the right-hand-side of eqn. 20 must be multiplied by a factor of 
lo-‘. 

SEC method of determining the pore-volume distribution 
This method has been developed by Hal&z and Martin4*5 as an useful tech- 

nique exhibiting substantial advantages over the commonly used “classical” methods 
of determining the pore-volume .distribution, e.g.; capillary condensation and mer- 
cury porosimetry. It has been applied tostudies of the porous structure of rigid solids 
such as silica, alumina, tungsten oxide, etc.&*‘, as well as of non-rigid solids swellable 
in various solvents, e.g., polymersand ionexchangers*-’ l. The principles and bound- 
ary conditions of the method have been described5, therefore only a brief explanation 
will be given below. 

Conventional HPLC equipment is used, the material studied being packed into 
a column by “dry” or “slurry” techniques depending on the particle size. Medium 
polar and polar solvents, e.g., dichloromethane, tetrahydrofuran, dimethylform- 
amide or even water, can be employed as mobile phases. A suitable set of samples 
of known molecular masses is necessary which are well soluble in the corresponding 
eluent. The samples are used as standards when determining the pore-volume distri- 
bution. 

For rigid solids a set of twelve linear polystyrene standards (PSt) of different 
polymerization grades is applied, their molecular masses ranging from 600 to 3.7 - 
lo6 units and their polymolecularity being less than 1 .I (ref. 5). Referring to the 
conclusions of Van Kreveld and Van den Hoed12 concerning the equivalent-sphere 
approximation of the dissolved random-coil PSt molecules, the effective “hard- 
sphere” diameter, cp;, of the kth standard can be evaluated from 

rp; [nm] = 0.0246A@588 (k = 1, 2, . . ., 12) (21) 

where Mk is molecular -mass of the standard. As found by Hal&z and Martins, 
however, the pore-volume distribution ourve obtained by using the calculated cp; 
values does not agree in respect -of the position of the maximum with the curves 
obtainable by the “classical” methods. To fit the results of the SEC method with 
those of the other methods they proposed the equation 

& [nm] = 0.062@.5g (k = 1, 2, . . ,, 12) (22) 

thus ascribing to the kth PSt an exclusion value, cp:. The latter is interpreted as the 
minimum effective pore diameter which exerts no steric hindrance to penetration of 
the corresponding PSt molecules. 

The &’ values are about 2.5 times greater than those of cp;. This leads to a 
better coincidence of the distribution curves obtained by SEC and by the other 
methods, at least in respect of the positions of their maxima. However, the SEC 
distribution curve appears to be considerably broader than the corresponding “classi- 
cally” obtained curves. Hal&z and Martin5 attempted to explain this by pointing 



DETERMINATION OF PORE DISTRIBUTION BY SEC 169 

out that the boundary conditions for SEC are quite different from those of the “classi- 
cal” methods. As noted by Knox and Scott 13, the exact explanation follows from the 
fundamental concepts of SEC. 

It is known that the molecular separation obtained by SEC is due to the dif- 
ferent degrees of permeation of the available pore volume of the column packing by 
molecules of different sizes14. Hence, the void volume of a column is considered as 
a sum of the total pore volume, VP, of the packing and the extra-particle volume, 
Vz. The elution volume, VEkr of the kth PSt standard is given by 

VEk = VZ + VPKk (23) 

where & is the so-called exclusion coefficient of the standard. Obviously, small mole- 
cules, e.g., those of the eluent, that permeate virtually all pores will have an elution 
volume equal to the void volume, i.e., their exclusion coefficient will be unity. In 
practice, it is convenient to use benzene as a “zeroth” standard (k = 0), because its 
molecules are comparable in size with those of the eluent. Then, K,, = 1 and 
V,, = Vz + VP. Large molecules (like those of PSt 12), which cannot permeate the 
available pores, are totally excluded, i.e., &Cl2 = 0, and hence, Vn,, = Vz. For the 
other standards, k, between benzene and PSt 12,0 < & < 1, and the corresponding 
elution volume, FEk, is smaller the greater is the molecular mass (or &) of the stan- 
dard. Taking this into account, the total pore volume of a column material can be 
evaluated from 

VP = VEO -vE12 (24) 

The accuracy of eqn. 24 will be discussed later. 
Generally, the exclusion coefficient, K, is interpreted as the ratio of the pore 

volume, accessible to the mass centre of the penetrating “hard-sphere” molecule, to 
the total pore volume of the column packing 12J4. Considering different models of 
pore geometry l 2~1 3,1 5, K can be represented by corresponding expressions that enable 
calculation of the & values for the different standards. A comparison of the calcu- 
lated and experimental Kk values allows the adequacy of the pore-shape model to be 
evaluated. As noted by Knox and Scott13: “Indeed, the rather slight improvement 
in going from the simplest model of a uniform cylindrical pore to the most complex 
model of random size touching spheres is something of a disappointment”, That is 
why the authors proposed the model of cylindrical pores, taking into account that 
the pore size is randomly distributed. Thus, the small but definite loss in accuracy is 
compensated by the simplicity of the calculations connected with the SEC determi- 
nation of the pore-volume distribution. 

As shown in the previous section, the need to apply any model of pore ge- 
ometry has been avoided by generalizing the definitions of both the effective pore 
diameter, cp (eqn. 4), and the pore surface area, A, (eqn. 6). In accordance with eqn. 
7, the volume of a pore accessible to a PSt molecule of diameter cp; can be defined 
as 

Vi,k = (qa’ -“/2h)(q - q;l)“+ ’ (25) 
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providing q 2 cp;. Then, the exclusion coefficient, &, from this pore can be obtained 
by dividing eqn. 25 with eqn. 7: 

K k (26) 

Bearing in mind the random distribution of q, we can generalize eqn. 26 for all pores 
having cp 2 6, i.e.: 

&= j-‘=“(l -$y+‘W(rp)dq (k=0,1,2,...,12) (27) 

ca=& 

The upper integration limit, qrn, in eqn. 27 must be carefully estimated in order to 
account for the widest pores. Hence, the values of (pm for porous solids can consider- 
ably differ, e.g., from 300 to 1000 nm or more. 

Eqn. 27 is essential for deriving the approximate expression for the pore-vol- 
ume distribution function, W(p), since rp; are known and the & values are obtainable 
from SEC measurements. Using a familiar expansion of the binomial, (1 - &/cp)“+ r, 
to an infinite series we obtain: 

n+l = 1 _ (n+l)@ + (n+l)n cpi ~- - 
cp 0 2 (n+ Mn-1) (p; 3 + . . _ 

2! q 3! 0 9 

For simplicity, only the first three terms will be considered. Thus, eqn. 27 can be 
rearranged to: 

Ilt & = wso)dv - (n+ 1) s (n+ 1)n m 4p;I W(cp)dq + 2 2 W(cp)dq (28) 
rp 

co: VL 

A three-fold differentiation of eqn. 28 with respect to cp; leads to: 

n(1 -n) d’W(&) -. 
2 dqi2 

W-h) dW&) (n+ 1) W(cp,) = d3& _-.-_-. 
4 ddc rp;i” 

k 
Wc3 

Bearing in mind that this holds for each PSt standard, k, and that the ql, values 
correspond to the minimum diameters, cp, of the pores accessible to the PSt molecules, 
we can generalize the equation as follows: 

n(1 -n) d’W(q) (n2- 1) dW9) -.--p.-- - . 
2 dv2 

(n+ 1) W(p) _ d3K 
(29) 

cp dq ‘p2 dq3 

For cylindrical pores where n = 1, we immediately obtain the solution of eqn. 29, i.e., 
the pore-volume distribution function 

(30) 



DETERMINATION OF PORE DISTRIBUTION BY SEC 171 

which is identical with that derived by Knox and Scott13. For pores of arbitrary 
geometry, when 0 < p1 < 1 or 1 < n < 2, eqn. 29 must be solved in respect of W(p), 
following the rules for non-homogeneous differential equations of second order. 

Thus, it can be shown that eqn. 29 has two additional solutions dependent on 
the value of n. When II < 1 

d3K 
w(~) = CIV-a+a + Cz(p-=-a + G#. - 

dv3 

where 

a = (n + 1)/n (3la) 

V*b) 

Whenn> 1 

d3K 
IV(~) = Crcp-” cos (A’ln 50) + C&-” sin (I’ln cp) + Gqn’ . - 

dq3 
(32) 

where 

[ 

4 1 1 
112 A’= --__ 

n(n-1) n2 
1 (324 

In eqns. 3 1 and 32, Cr, Cz, CI and Cz are adjustable constants, whose determination 
will be discussed later, and 

G = -2/[4-n(n-I)] 

Summarizing: 

(33) 

(1) The representations 30, 31 and 32 of W(cp) correspond to three different 
cases when the pore-shape index can be either n = 1 or n < 1 or n > 1 

(2) Two of the representations contain adjustable constants (C,, C2, C,, 
C;), as well as parameters dependent on the value of n (a, 1, A’, G) 

(3) To transform the W(cp) representations in explicit form it is necessary to 
derive an expression for d3K/dp3. This is possible if the K(cp’) dependence for the 
whole set of PSt standards is known 

Hence, in order to apply the derived representations, we need first to find an 
appropriate approximation of the @cp’) dependence and secondly, to propose a reli- 
able procedure for evaluating the pore-shape index, n. These are the two main prob- 
lems to be discussed further. Since the type of the K(rp’) dependence is entirely con- 
nected with the pore structure of the material studied, the problem of approximating 
this dependence will be considered in the discussion of the silica gels intended for use 
in HPLC. The next section will deal with the problem of evaluating n, assuming the 
W(cp) distribution function is represented in an explicit form, 
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Since it is difficult to obtain preliminary information concerning y1 for any 
material, we do not know which of the three W(q) representations to employ. More- 
over, no relationship is available for the calculation of n on the basis of the experi- 
mental data. Hence, the only possibility for evaluating n is the employment of an 
iterative calculation procedure. 

For the first iteration step it is assumed that n = 1. Using eqn. 30, the exclusion 
coefficients, A$‘, are calculated by solving numerically the integral in eqn. 27. For this 
purpose the equation is represented as 

VP-Bin 

E= 1 %Wcp (k = 0, 1,.2, , . ., 12) 
V=C; 

(34) 

where Acp is the length of the integration subinterval,. e.g., Aq= 1 nm. Since the 
SEC-measured values, J$, are known: 

A& = Ii$’ - K$ fk = 0, 1,2, . , ., .12) (35) 

Furthermore, differentiation of eqn. 34 with respect to n leads to an expression for 
the partial derivatives: 

Having the a&/an values at our disposal, the following simple system of equations 
can be compiled 

bK12 
-- An = AKlz 

dn 

(37) 

where An is a correction to be added to n. 
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System 37 is overdetermined and can easily be solved in respect of An by 
applying matrix algebra. Then, the correction 

An = “=F2 

c (=k/dnj2 

k=O 

is determined by the least squares method and after addition to the previous value 
of n according to 

ni+l = ni f (An)i (i = 1, 2, 3, . . ., etc.) (38) 

gives the corrected value of n for the next iteration step, i + 1. Thus, after the first 
iteration step, depending on the porous material, An can be negative or positive and 
hence, n < 1 or n > 1, respectively. 

To generalize the procedure for the next steps, eqns. 3 1 and 32 wil be expressed 
in the common form 

Wcp> = Clfitcp) + GMcp) + G4cp) (39) 

wherefi(cp),fi(q) and A(q) are the corresponding functions in the above mentioned 
equations, while G is calculable from eqn. 33. Constants C1 and C2 are adjusted so 
as to satisfy the conditions 

W(cpo) = 0 and 
s 

m W(cp)dp = 1 (40) 

‘PO 

where cpo is the value of the smallest pore diameter available. For a variety of porous 
materials, cpo is easy to estimate, e.g., for silica gels it cannot be less than 0.1 nm. 
Thus the following equations are obtained 

Cdi(cpo) + W2(cpo) = -GA(vo) 
(41) 

Cl m 

r 

_fi(cpNrp + Cz 

s 

mfi(cpNv = 1 - G m 4cphb 

'PO 'PO 'PO 

which can be solved numerically in respect of the constants C1 and C2, again em- 
ploying matrix algebra. 

Once calculated for a certain value of n, Ci and C2 are used in the next iteration 
step with the corresponding IV’(q) representation to obtain the values of the d&/an 
derivatives according to eqn. 36. Determination of the correction An by solving the 
system 37 leads to a new refinement of n (eqn. 319, etc. In order to control the 
efficiency of the iterative procedure a criterion, F,,, is calculated at each iteration 
step: 
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(42) 
k=O 

During the iteration steps, F,, gradually decreases to a minimum value corresponding 
to the best fit of the calculated to the experimentally measured & values. Then, the 
iteration procedure is terminated and the last value of n is used in the evaluation of 
both the pore-volume and the actual pore-size distributions, as well as for determin- 
ing their important numerical characteristics. 

EXPERIMENTAL 

Apparatus 
The liquid chromatographic equipment is described elsewhere16g1’. The col- 

umns were drilled stainless-steel tubes (300 mm x 4.2 mm I.D.). Both the column 
and the eluent container were thermostatted with circulated water during the mea- 
surements at 22.0 f O.l”C. 

Reagents 
The sorbents were commercially available silica gels intended for use in HPLC: 

Si-60, Si-100 and Si-200 (E. Merck, Darmstadt, F.R.G.). Their physical character- 
istics are presented in Table I. 

Dichloromethane purified by distillation was used as the eluent, and special 
care was taken to keep it relatively dry (water content less than 80 ppm). Benzene 
and twelve PSt standards (Waters Assoc., Milford, MA, U.S.A.) were dissolved in 
dichloromethane to give 0.1% solutions, from which approximately 10 ~1 were in- 
jected. 

Procedures 
All sorbents were packed into the columns by using a modified “slurry” tech- 

nique”. Before the measurements, the columns were extensively washed with di- 
chloromethane. The mass of the packing was determined by unpacking the column 
after use and weighing the vacuum-dried material. The volumes of the empty columns 

TABLE I 

PHYSICAL CHARACTERISTICS OF SELECTED SILICA GELS 

Silica Mean Specific Specific 

particle surface pore 

size* area* volume 

(Pm) (mZigi (em” id 

Si-60 10 355 0.742 

Si-100 10 308 1.00 

Si-200 10 167 0.736 

l Irregular particles. 
* Measured by Veba-Chemie (Gelsenkirchen, F.R.G.) 
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were estimated by weighing the empty columns and again when filled with distilled 
water. 

The measurements for a given sorbent were carried out at constant temperature 
and flow-rate, the latter ranging from 1 to 2 ml/min for the different silicas. The 
elution times of the standards were measured at the corresponding peak maxima, 
while the elution volumes, Y,,, were obtained by multiplying the times by the flow- 
rate selected. The vEk values were then employed for calculating the Kk values from 
eqn. 23. For comparison, the pore-volume distributions of the selected silica gels 
were obtained by nitrogen capillary condensation, using a home-made apparatus. 

All calculations, including those of the K(cp’) dependence for the sorbents, the 
iterative evaluation of the pore-shape index, ra, and the W(cp) and D(cp) distributions 
and their characteristics, were performed by means of a Model 9845 computer (Hew- 
lett-Packard, Palo Alto, CA, U.S.A.), using the author’s BASIC programs. 

RESULTS AND DISCUSSION 

Approximation of the K(qf) dependence for silica gels 
Initialy, the K(rp’) dependence was approximated by a 5-7 degree polynomial 

using the Kk values determined by SEC and the corresponding rp; values of the PSt 
standards calculated from eqn. 21 as proposed by Van Kreveld and Van den Hoedlz 
with tetrahydrofuran as the eluent. However, the correlations obtained were poor, 
giving two or three negative G values for all silica gels examined. Finally, the ap- 
proximation 

Kk = l/(1 + bI$$_“) (43) 

was found to be sufficiently representative and convenient as regards the determi- 
nation of the parameters b and m. Rearrangement of eqn. 43 yields the linear regres- 
sion 

m log qp; + log b = log 

enabling the evaluation of both b and m. 
As is evident from eqn. 44, it was not possible to employ both the KO and Kiz 

values, which when calculated from SEC data are always unity and zero, respectively. 
The regression calculations for each silica gel were performed by using 9; and & 
values for the standards k = 1, 2, . . ., 11. Having b and m values at our disposal, 
the corresponding KO and K1 2 coefficients can be recalculated from eqn. 44 by intro- 
ducing the values of & and (pi2, respectively. 

Further, the calculated W(q) distributions were found to differ from those 
obtained by nitrogen capillary condensation, especially in respect of the positions of 
their maxima. The calculated maxima occurred at considerably lower cp values than 
the experimentally obtained ones. The data published by Van Kreveld and Van den 
HoedI for Kn determined by SEC for both Poracil C and D with tetrahydrofuran 
as eluent were then employed. Since the cp; values of the PSt standards used by these 
authors were also available, the described calculation procedure was applied to their 
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TABLE II 

COMPARISON OF THE CALCULATED MEAN PORE DIAMETER OBTAINED IN THIS WORK 

WITH PREVIOUS RESULTS FOR TWO TYPES OF PORASIL 

Eluent: tetrahydrofuran. 

Silica Calculated mean Pore diameter 

pore diameter (nm) range* 

(W 
This work Ref. 12 

Porasil C 29.7 33 2&40 
Porasil D 60.4 69 40-80 

* Data given by the manufacturer and cited in ref. 12. 

silica gels. The good agreement between the pore diameters calculated here and the 
pore diameter ranges given by the manufacturer, as well as with the mean values 
calculated by the authors on the basis of their “random touching spheres” model, is 
evident from Table II. 

This immediately shows that the & values calculated from eqn. 21 hold only 
if the SEC measurements are performed with tetrahydrofuran. In the case of di- 
chloromethane, the dependence of qi on A4, for the dissolved PSt molecules remains 
similar (as indirectly illustrated by Hal&z and Martins wit eqn. 22), however slightly 
greater & values are expected. Since there was no experimentally verified 40; (Mk) 
dependence in the case of dichloromethane, an attempt was made to determine it by 
“trial-and-error” refinements. For this purpose, pore-volume distribution data (from 
nitrogen capillary condensation) for a spherically shaped silica, Be 74/3, were em- 
ployed, kindly supplied by Professor K. Unger, University of Mainz. This silica is 
quite different from the irregularly shaped silica gels examined in the present study. 
The cp; (Mk) dependence was fitted in order to obtain a coincidence of the W(q) 
maximum of Be 74/3 (calculated from SEC data) with that determined by capillary 
condensation for the same silica. Thus, the equation 

& [nm] = 0.0412 &$5’s (k = 1, 2, . . ., 12) (45) 

was obtained which does not depend on the SEC data for the silica gels. Using the 
cp; values estimated from eqn. 45, excellent agreement was obtained between the 
calculated and the experimentally determined W(q) distributions of the silica gels 
studied. Hence, it seems quite possible that PSt molecules having the same molecular 
mass can exhibit different dimensions when dissolved in various solvents. Taking this 
into consideration, only the cp; values calculated from eqn. 45 were employed. They 
are listed in Table III together with the corresponding molecular masses of the PSt 
standards. 

Fig. 1 illustrates the K(#) dependence for the selected silica gels. The curves 
obey eqn. 43, while the points correspond to the SEC data. The adequacy of the 
approximation is visible and the good agreement is confirmed by the calculated COP 
relation coefficients; the latter are close to unity as demonstrated in Table IV which 
also lists the calculated parameters b and m. 
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TABLE III 

DATA FOR POLYSTYRENE STANDARDS 

k = Serial number of standard; MR = weight-averaged molecular mass; q; = effective diameter of 
polystyrene molecule calculated from eqn. 45. 

Standard k 46 

(nm) 

Benzene 0 78 0.538 
Pst 1 1 600 1.77 
PSt2 2 2100 3.70 
PSt3 3 3550 5.03 
PSt4 4 10 ooo 9.26 
Pst 5 5 20 800 14.2 
Pst 6 6 36 tXKl 19.7 
Pst 7 7 111000 38.1 
PSt 8 8 200 000 53.9 
Pst 9 9 498 000 92.1 
PSt 10 10 867 000 128 
PSt 11 I1 2 610 000 244 
PSt 12 12 3 700 ooo 299 

b 

0 LO 80 120 160 200 240 280 320 

9’[nm] 

Fig. 1. Approximated K(@) dependence for the selected silica gels: (a) Si-60; (b) Si-100; (c) Si-200. All 
curves are calculated according to eqn. 43. The points correspond to the SEC data. 
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TABLE IV 

DATA CONCERNING THE APPROXIMATION OF THE K(rp’) DEPENDENCE FOR SELECTED 
SILICA GELS 

Silica Parameter* Correlation 
coejicient 

b m 

Si-60 0.1672 1.302 0.9789 
Si-100 0.08795 1.309 0.9871 

Si-200 0.05111 1.396 0.9939 

l Calculated from the linear regression, eqn. 44. 

Determination of the total pore volume 
As pointed out, eqn. 24 enables the evaluation of the total pore volume, YP, 

of a material studied by SEC. From a theoretical point of view, however, this equa- 
tion appears to be an approximation. It could be assumed that pores of diameters 
less than 0.5 nm are present in many porous materials, especially in silicas. Since the 
diameter of benzene (the “zeroth” standard) is a little greater than 0.5 mn, it cannot 
penetrate these narrowest pores, so that their volume remains inaccessible. Hence, 
the elution volume of benzene, vEEo, should be less than theoretically expected. On 
the other hand, extremely large pores (cp > 300 nm) in the porous media may also be 
available. Then, the molecules of the last PSt standard (k= 12) will not be totally 
excluded and their elution volume, VE12, will be a little greater than that expected. 
Thus, eqn. 24 would give V, values smaller than is actually possible. 

Another source of inaccuracy in eqn. 24 is the a priori assumption of I& = 1 
and K,, = 0. Even if no pores of q < 0.5 and cp > 300 nm are present in the material, 
it is theoretically impossible to obtain & = 1. Because of the finite (although small) 
dimensions of the benzene molecule, the pore volume accessible to its mass centre is 
always less than the actual pore volume and hence, K. becomes close to (but definitely 
smaller than) unity. 

These problems have been discussed by Van Kreveld and Van den Hoed12, 
who found that the measured elution volumes differ from the actual ones in average 
by about 1%. It is, of course, possible to employ “classical” methods to determine 
Vr. However, mercury porosimetry does not allow a correct measurement of the 
volume of pores whose diameters are less than 7 nm. Similar difficulties arise with 
the method of capilary condensation which permits correct measurement only of 
pores having cp between 2 and 30 nm. Hence, strictly speaking, there is no method 
of exactly determining the total pore volume of a porous material. According to my 
experience, the best results might still be expected from the SEC method, because it 
enables measurements over a quite broad cp interval, e.g., OS-400 nm, accounting for 
the evidence that K12 could have an extraordinarily small value and yet satisfy the 
inequality Xl* > 0. Thus, if an appropriate approximation of the K(cp’) dependence 
has been found, then a reliable estimation of K,, and K,, should be achieved that 
will facilitate the evaluation of VP via: 

VP = ( vEO - vElz)/(Ko - Ku) (46) 
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The application of eqn. 46 requires the employment of smoothed Kk values instead 
of those initially determined from eqns. 23 and 24. However, the calculated IV(q) 
and D(q) disributions differ negligibly from those calculated without any refinement 
of the initial Kk values. Therefore, in this study, eqn. 24 was used for evaluating the 
total pore volumes. The calculated VP values were found to be about l-3.5% greater 
than those obtained by nitrogen capillary condensation. Obviously, it may be as- 
sumed that eqn. 24 is a reliable approximation giving VP values of an entirely suffi- 
cient accuracy for practical purposes. 

Pore-volume and pore-size distributions 
Figs. 24 illustrate the obtained W(q) and D(q) distributions (curves 1 and 2, 

respectively) for the silica gels examined. All the distributions are bimodal, thus in- 
dicating that two groups of pores determine the structure of the sorbents. The q axes 
of the plots are scaled logarithmically so as to cover the full range from 0.5 to 400 
nm. However, the curves appear to be perturbed specifically, thus giving a distorted 
picture of the ratio of the two groups of pores present. In Fig. 5 the corresponding 
pore distributions for Si-60 silica are partially drawn with a linear ~0 axis to dem- 
onstrate the actual ratio. A comparison of Figs. 2 and 5 makes the difference obvious. 
From the distributions obtained it can be estimated that the pores of CP < 2.1 nm 
represent 26% of the pores in Si-60, while their common volume comprises only 
3.8% of the total pore volume. Analogous calculations for the other two sorbents 
show that the narrower pores (cp ~3.4 nm for Si-100 and cp< 5.3 nm for Si-200) 
constitute a considerable fraction of all open cavities (36 and 42%, respectively), 

O.OL 

Db') 

W(@) 

0.03 

Fig. 2. Calculated W(q) (1) and D(q) (2) distribution curves for Si-60 silica. 

Fig. 3. Calculated W(q) (1) and D(p) (2) distribution curves for Si-100 silica. 
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Fig. 4. Calculated W(q) (1) and D(p) (2) distribution curves for Si-200 silica. 

Fig. 5. Calculated W(q) (1) and D(p) (2) distribution curves for Si-60 silica (linear cp axis). 

however their contribution to the total pore volume remains relatively small, i.e., 4.5 
and 4.9%, respectively. Hence, the chromatographic behaviour of the sorbents will 
be determined mainly by the broader pores, their distributions being represented as 
smooth asymmetric differential curves in Figs. 24. 

The numerical characteristics of both the W(q) and the D(q) distributions are 
presented in Table V together with the specified values of n and h. For all the sorbents, 
n and h are positive and less than 1 and 2, respectively. Since the last two numbers 
correspond to a cylindrical pore geometry, it is clear that the average shape of the 
pores deviates to different extents from the cylinder form. Comparing the values of 
n and h for each silica, one can see that they nearly satisfy the equation h = n + 1, 
which would hold for strictly cylindrical capillaries. The deviations of up to 3.5% 
observed appear to be quite acceptable. 

As is evident from Table V, the positions of the maxima, (pW,maX of the cal- 
culated W(q) distributions are in excellent agreement with those, &,,., of the 
pore-volume distributions determined by nitrogen capillary condensation. This is 
especially true for Si-60 and Si-100, while for Si-200 the deviation does not exceed 
4.5%. A common feature of the W(p) and D(q) distributions for each silica is the 
lack of coincidence of the respective maxima. As a rule, the W(q) maximum always 
lies at a greater cp value than that of the corresponding II(cp) maximum, i.e., @W,mar 
’ @Danax- This is quite natural and can easily be explained. 

Let us assume that the fraction of pores having diameters qj within the range 
Cpj to qj+dq is equal to that of the pores of diameters ‘pc ranging from (p4 to 
v~+ drp. Moreover, ej and (p4 lie on both sides of the position of the D(q) maximum, 
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TABLE V 

NUMERICAL CHARACTERISTICS OF B’(q) AND D(q) DISTRIBUTIONS FOR THE SELECTED 
SILICA GELS 

Silica n h W(p) distribution (nm) D(q) distrtiution (nm) 

&.max @w,max 4% bw @D.maX %I alI 

Si-60 0.645 1.639 6.1 6.0 26.2 29.2 3.6 4.33 5.90 
Si-100 0.606 1.633 9.5 9.8 30.6 32.1 5.9 7.58 8.78 
Si-200 0.466 1.514 14.0 13.4 32.7 33.2 9.0 11.7 11.2 

@%,,.. = Experimentally determined position of the maximum (by nitrogen capillary conde- 
sation); &.mar and @D.,X = positions of the maxima of the calculated distributions; Gw and 
@,o = mean values of the pore diameter; crw and era standard deviations. 

@D,max, SO that @~,ma~ <qq. Then, the overall volume of the q)4 pores will be 
greater than that of the qj pores. On the other hand, if we assume that qj and (pq lie 
equidistant on both sides of &,max and again qj < (pD,maX < cp4, then, beCaUSe of the 
non-symmetrical form of the D(q) distribution, the fraction of the pq pores will be 
greater than that of the pj pores, the former having a greater pore-volume contri- 
bution than-the latter. Under these circumstances the W(q) maximum will lie at a 

@W ,max value considerably greater than eD,_. 
Calculated mean q values, qpw and &, as well as the standard deviations, bw 

and gD, of the W(q) and the D(q) distributions, are also presented in Table V. In 
going from Si-60 to Si-200, an increase in the corresponding values is observed, thus 
indicating a broadening of the pore distributions. A comparison of Cpw with @>D (or 
of bw with CD) for each silica gel, however, immediately confirms the difference be- 
tween the W(q) and the D(q) distributions in Figs. 2-4. In general, the actual po- 
re-size distribution is always narrower than the corresponding pore-volume distri- 
bution. According to eqn. 12, this is expected because W(q) is obtained from D(q) 
by multiplication with (p”+l/J,+ i. The latter ratio increases with increasing v, from 
nearly zero to values greater than unity, thus extending W(p) to a large degree as 
compared to D(v). 

In conclusion, the generalized theoretical approach to the pore-distribution 
problem described enables the determination of the actual pore-size distribution of 
solid media, without the need for any model of the pore geometry. The pore-shape 
index introduced appears to be an averaged quantitative characteristic of the pore 
form and can be reliably evaluated via the proposed interative procedure. This has 
been demonstrated with sorbents intended for use in HPLC, whose pore-volume 
distributions have been calculated from SEC data. From the pore-shape indices, it 
is found that the geometrical form of the pores can differ from that of cylindrical 
capilaries. Hence, the commonly accepted model of cylindrical pores cannot always 
serve as a good approximation of the pore structure of the materials. 
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